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SUMMARY

This report presents the results of an exploratory flight test
program conducted on a CH-47C Army helicopter for the purpose
of investigating the structural performance of boron-reinforced
epoxy aft rotor blades and the associated effects on the heli-
copter system,

The boron-reinforced epoxy aft rotor blades were developed
under an Air Force contract and are currently the property
of the U.S. Army. The forward rotor was equipped with S-
glass-reinforced epoxy rotor blades and are the same aero-
dynamic configuration as the boron blades.

On-board instrumentation was used to provide real-time tele-
metric monitoring and magnetic tape recording of 132 data
parameters on the CH=-47C. Data were obtained at nominal gross
weights of 33,000, 40,000, 46,000, and 50,000 pounds gross
weight at altitudes from sea level through 15,000 feet density
altitude and were recorded on level-flight airspeed sweeps,
rpm sweeps, climbs, turns, autorotation, partial-power descent,
and mild flare maneuvers.

The inception of rotor blace moment stall was not delayed over
that of the similar glass biade configuration evaluated and
reported in USAAMRDL Technical Report 71-42. Pitch link al-
ternating control loads did not build up abruptly after incep-
tion of moment stall, as is typical of the conventional CH=-47
rotor system; hence, significant expansion of the CH-47C
structural envelope was demonstrated.

This program has demonstrated the flightworthiness of boron-
reinforced epoxy main rotor blades in the demanding environment
of the aft rotor on a tandem-rotor helicopter. No structural
problems were encountered. There were no restrictive 3/rev
vibrations despite a first-elastic-mode, flap-bending natural
frequency of 3.21 times rotor speed. Track adjustments were
required on the forward rotor throughout the program (S-glass
blades). The increase in torsional stiffness of the boron
blade over the glass blade provided excellent blade-to-blade
track conformance throughtout the program after minimal initial
adjustment.
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Waller, Structures Division, was the Contracting Officer's
Technical Representative.
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Figure 1.

NCH-47C Helicopter With Boron Advanced-Geometry
Blades on Aft Rotor and Fiberglass Advanced-
Geometry Blades on Forward Rotor.
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INTRODUCTION

The exploratory flight test program conducted under Contract
DAAJ02-72-C-0010 represents a significant milestone in the
demonstration and evaluation of advanced-composite materials
in primary structural applications.

The design, material characterization testing, fabrication,
quality assurance, and preflight test program on the boron-
reinforced epoxy aft rotor blades were reported in Reference 1.
The development and test of these blades, in conjunction with
the development and test of a boron horizontal stabilizer for
the F-111, represented significant technological development
objectives. The rotor blades were bench-tested and whirl-
tested under an Air Force contract., The U.S. Army confirmed
the flightworthiness of the rotor blades by implementing this
program which included a safety-of-flight review, assignment
of a CH-47 aircraft (Figure 1), aircraft modification, instru-
mentation and calibration of blades and aircraft systems,
blade tracking, ground mechanical instability tests, approxi-
mately 15 hours of flight test and data accumulation at four
gross weights throughout the altitude and speed capability of
the CH-47 aircraft, and analysis and reporting of the data.

The flight testing was accomplished between 1 March and 30
April 1972 at the Vertol Division Flight Test facility in
Philadelphia, Pennsylvania.
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FLIGHT TEST

Flight testing was performed on an NCH-47C aircraft, Army
serial no. 66-19103, between 25 February and 28 April 1972 at
the Vertol Division Flight Test Facility in Philadelphia,
Pennsylvania, and at the Vertol Division's auxiliary test site
at Millville Municipal Airport, New Jersey.

The detailed flight test requirements for the program are de-
scribed in Reference 2; the methods and procedures for con-
ducting stress and motion and performance tests are presented
in Reference 3. Table I is a summary of the flight test con-
ditions and associated data flight runs conducted to comply
with the requirements of Reference 2.

The program encompassed a broad spectrum of test conditions at
configurations from design gross weight of the CH-47C (33,000
pounds) to maximum gross weight (50,000 pcunds). The latter
weight is not currently approved by the Army for service oper-
ation; however, Boeing has conducted considerable testing at
this gross weight. The program and gross weight/center-of-
gravity envelope shown in Figure 2 were approved following a
safety-of-flight review based on data contained in Reference 4.

The flight test program on the advanced-geometry boron blade
accumulated 14 hours 41 minutes of flying time.

AIRCRAFT CONFIGURATION

The aircraft used for the flight test was an NCH-47C helicop-
ter as stated. The N designation indicates that the aircraft
is in a special test configuration.

The following changes were made to the aircraft for this
program:

NOTE: Helicopter rotor blades are commonly color coded in
some manner for easy identification after installation.
Throughout this report the blade color cited refers
to the color band on the corresponding arm of the pitch
varying housing. Such red, yellow, and green coding
marks are placed on all CH-47 rotor heads.

e Advanced-geometry fiberglass-reinforced epoxy rotor blades
were installed on the forward rotor hub:

* No. BCW-1-104, green
* No. BCW-1-105, yellow (instrumented)
* No. BCW-1-106, red
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® Advanced-geometry wvoron-reinforced epoxy rotor blades were
installed on the aft rotor hub:

* A-2-104, green
* A-2-101, yellow (instrumented)
* A-2-103, red

® Modifications were made to the control kinematics to main-
tain similarity to the production cambered-airfoil, steel-
spar rotor blades of the sensitivity of the controls to pilot
longitudinal inputs and to the stability augmentation system
(sas) .

e Standard production CH-47C self-tuning vibration absorbers
were installed in the nose and cockpit, tuned for rotor speeds
of 232 to 251 rpm. The 90-pound-mass, fixed-tuned absorber
installed at the station 575 in the aft pylon was in the stan-
dard production configuration (tuned to 243 rpm rotor speed).

® A water ballast tank system of 8,000-pound capacity with an
emergency dump capability was installed.

® A cruise guide indicator (CGI) was installed in the pilot's
instrument panel to monitor loads in the upper flight controls.

® An on-board data-recording system was included as discussed
under INSTRUMENTATION.

See Figure 3 for the orientation of the rotor blades on the
helicopter.

EQUIPMENT

Special equipment used during the program was as follows:

® A Strobex blade tracker for in-flight blade tracking.

@ A tethered hover rig consisting of the necessary cables, fixed
ground attachment points, and load cell-cable angle instrumen-
tation. Used unsuccessfully to record hover performance.

INSTRUMENTATION

All data were recorded on a narrow-band frequency-modulation
(NBFM) , l4-track Ampex tape recorder, Model AR-200, fitted with
250-kilocycle recording heads.

Table II lists all parameters which were recorded during the
program. NBFM data signals from each of the 14 banks of limited-
frequency-range oscillators were mixed into a composite signal
and recorded on tape. Data were recovered by passing the com-
posite signal through a bank of frequency discriminators to ob-
tain the individual analog signals.
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TABLE II. AVAILABILITY OF INSTRUMENTATION AND DATA RECORDING
Flight
Code [ o o~
No. Parameter Location Unie [0 Naa S Eaain oo nio riode o
Omm oo 0o mmOUmmmmmoam

Basic Aircraft
6240 Airspeed Ship(prod.)system in. H0 00000 [¢] 000 [o] 00
6130 Altitude Ship(prod.)system in. g 00000 © Qoo 0 o®
7301 Outside Air Temperature °C 00000 [¢] 000 [o] 00
3601 Rotor Speed Forward 1/rev 00000 o] 000 [o] 00
3604 Rotor Speed Aft 1/rev 00000 [o] 000 o] 00
1501 Rotor Speed (Analog) rpm 00000 o] 000 o] oo
1608 Event Marker 00000 (o] 000 o] (o 3 o]
2124 Cyclic Trim Position Forward deg 00000 O 000 (o] o0
2125 Cyclic Trim Position Aft deg 00000 O 000 (o] (ol o)
3162 Time Code (Slow) 0000O0 o} 000 o] oo
3160 Time Code (Fast 00000 o 000 o} (e e}
8202 Fuel Total No. l(left)engine 1b 00000 [o] 000 o] 00
8204 Fuel Total No. 2(right)engine 1b BoOoOoooO ] 000 [¢] [o2o)

Droop Stop Light torward 00000 o 000 (o] o0

Droop Stop Light Aft 00O0CO0O0 o} 000 o o0

Performance
7201 Fuel Temperature No. l{left)engine 6 000O0O0 o] 000 (o] oo
7203 Fuel Temperature No., 2(right)engine °c XX XXo [o] 000 o 00
8201 Fuel Flow Rate No. l{left)engine gal/min 0 0O 000 o] 000 o] oo
8203 Fuel Flow Rate No. 2(right)engine gal/min 00O 00O o] 000 [s] 00
1503 Compressor Speed N) No. l{left)engine Hz 00000 [s] 000 (o] oo
1504 Compressor Speed N) No. 2(right)engine Hz 00000 (o] 000 (o] oo
3606 Engine Torque No. 1l(left)engine pct 00000 [o] 000 [o] 00
3607 Engine Torque No. 2(right)engine pct XX XRO (o] 000 [o] o0
2224 Tethered Hover Long. Cable Cargo hook (o}
2225 Tethered Hover Lat Cable Cargo hook o}
5485 Tethered Hover Cable Load Cargo hook 1b X

Rotor Blade Position
2202 Flap Angle Fwd yellow blade deg 000O0O (o] 000 (o] 00
2204 Lead-Lag Angle Fwd yellow blade deg 00000 o) 000 o] o0
2203 Lead-Lag Angle Aft yellow blade deg 0Oo0OO0OBO O 000 [o] oo
2201 Flap Angle Aft yellow blade deg 00000 O 000 [¢] 00
2226 Delta Flap Angle Aft yellow blade degq 0o [¢] 000 (o] 00

Acceleration
1318 Vertical Pilot seat g 00000 (] oo o] 00
1373 Vertical Cockpit Sta 50 LH g 00000 (o] 0o [¢] 00
1375 Vertical Cockpit Sta 50 RH g 000BO o] 00 [o) 00
1329 Lateral Cockpit Sta 95 BL 0 -] 00000 o] 00 (o] 00
1330 Longitudinal Cockpit Sta 95 BL 0 g 00000 o] 00 [¢] o0
1350 Vertical Cabin Sta 320 LBL 49 g 00000 o] 00 [¢] [0 o]
1351 Lateral Cabin Sta 320 LBL 49 g 00000 [o] 00 [o] 00
1246 Vertical Cabin Sta 320 RBL 49 g 0O0O0O0CO0 (o) 00 o] 00
1357 vVertical Cabin Sta 350 LBL 25 q 00000 [o] co0o0 o] 00
1360 Vertical Cabin Sta 482 LBL 49 q 00000 o} 000 o 0o
1361 vVertical Cabin Sta 482 RBL 49 g 00000O0 (o] 000 (o (e 3¢}
1363 Lateral Cabin Sta 482 LBL 49 g 00000 O 000 o] 00




TABLE Il - Continued
Flight
COde ® o ~
No. Parameter Location Unit [P e ~r 0 OR ANMTEDB NGO ® OO
ENN NNNMEMM A MG N o6
L T B B AT B T L I Bt B T T B L o B B T T B )
Rotor Blade Loads
4110 Flap Bending Moment Aft sta 49.5 in.-1lb 0 0CO0COO O 000 o 00
4112 Flap Bending Moment Aft sta 49.5 in.-1b
4122 Flap Bending Moment Aft sta 117.0 in.-1lb o@do000 ¢ [eJeN¢) o} co
4124 Flap Bending Moment Aft sta 160.0 in.-1lb 0@ 000 O 000 o] 00
4126 Flap Bending Moment Aft sta 198.0 in.-1lb 0 @000 O 000 o} (s €]
4128 Flap Bending Moment Aft sta 252.0 in.-lb 0 gO000 ¢ 000 [¢] 00
4130 Flap Bending Moment Aft sta 288.0 in.-1b gPooOO0O X
4114 Chord Bending Moment Aft sta 49.5 in.-1b @ @
4142 Trailing-Edge Tension Aft sta 198.0 in.-lb 20000 O X X
4146 Spar Tersion Aft sta 285.6 in.-1b 000 OB X
4148 Spar Torsion Aft sta 286.4 in.-1lb 00000 © 000 o] o0
4150 Absolute Stress Aft sta 288, in./in. 0000 0 0o0o0 0 00
upper 90°
4152 Absolute Stress Aft sta 288, in./in. 0000 ¢} 000 o] 00
lower 0°
4154 Absolute Stress Aft sta 290, in./in.
upper 225°
4156 Absolute Stress Aft sta 288, in./in. 000 O 000 (o} 00
upper 315°
4106 Lag Damper Load Aft 1lb GoOOO0OO0O ¢ 000 [¢] oo
4109 Flap Bending Moment Fwd sta 49.5 in.~-l1lb B B X X
4111 Flap Bending Moment Fwd sta 49.5 in.-1b oo o0 000 o} o0
4113 Chord Bending Moment Fwd sta 49.5 in.-l1lb 00000 O 000 o] 00
4115 Chord Bending Moment Fwd sta 49.5 in.-1b
4141 Trailing-Edge Tension Fwd sta 138.0 in.-1lb 0 0 0 O X
4143 Trailing~Edge Tension Fwd sta 138.0 in.-1b B X
4105 Lag Damper Load Forward 1b 00000 O 000 0 00
Control Position
2107 Longitudinal Stick Pilot controls in. 00000 0 000 0 oo
2108 Lateral Stick Pilot controls in. 00000 O 000 (o} 00
2109 Directional Pedal Pilot controls in. 00000 O 000 o] 00
2110 Collective Thrust Lever Pilot controls in. 00000 O o0 [¢] 00
2112 SAS Pitch Actuator No. 1 system in. 00000 O 000 [o] 00
2113 SAS Pitch Actuator No. 2 system in. 00000 O 000 (o] 00
2114 SAS Roll Actuator No. 1 system in. 00000 O 000
2115 SAS Roll Actuator No. 2 system in. 00000 O 000 (o] 00
2116 SAS Yaw Actuator No. 1 system in. 0000O0C O 000 (4] oo
2117 SAS Yaw Actuator No. 2 system in. 00000 O 000 o] (U]
2122 Pivoting Actuator Forward in. 00000 O 000 (o] 00
2120 Swiveling Actuator Forward in. 00000 X 000 o} 00
2123 Pivoting Actuator Aft in. 00000 O 000 (o] 00
2121 Swiveling Actuator Aft in. 00000 O 000 (o] o0
Alrcraft Motion
2250 Pitch Attitude deg 00000 O 00 [o} 00
2251 Roll Attitude deg 00000 O 000 [o] o0
2252 Yaw Attitude deg 00000 O 000 [¢] oo
2208 Sideslip Angle Fwd rotor deg ocoo0oo0 0 000 o] o0
1601 Pitch Rate deg/sec 0 00O OO0 O oo o] 00
1602 Roll Rate deg/sec 000 0O O co0o0 (o] [e2N¢]
1603 Yaw Rate deg/sec 00000 O 000 4] 00




TABLE Il - Continued
Flight
Code © o o~
No. Parameter Location UR1E | 'R0 S i o i s ke S S ele oL
Mmooy Um0 mmmmmmnem
Upper Controls Loads
5464 Pivot Actuator Tension Forward 1b 00000 O 000 o 00
5465 Pivot Actuator Tension Forward 1b
5460 Pivot Actuator Tension Aft 1b S0O0 000 [o]
5462 Pivot Actuator Tension Aft 1b
. 5465 sSwiv Actuator Tension Forward 1b 00000 O 00O (o] 00
5467 Swiv Actuator Tension Forward 1b
5461 Swiv Actuator Tension Aft 1b
5463 Swiv Actuator Tension Aft 1b 00000 O 00O (o} 00
5482 Fixed Link Tension Forward 1b gpgagoo o 000 0 oo
5484 Fixed Link Tension Forward 1b
5481 Fixed Link Aft 1b 00000 0 000 o] 0o
5483 Fixed Link Aft 1b
5935 Lower Drive Arm Aft 1b 00000 0 000 [o] 0o
5937 Lower Drive Arm Aft 1b
5442 Red Pitch Link Forward 1b 00000 O 000 [+] [e3e]
5444 Red Pitch Link Forward 1b
5441 Red Pitch Link Aft 1b 00000 ] 000 o] o0
5443 Red Pitch Link Aft 1b
5431 Yellow Pitch Link Aft lb ooo00O0 @ 000 0 00
5433 Yellow Pitch Link Aft 1b
5451 Green Pitch Link Aft 1b 000
5453 Green Pitch Link Aft 1b
Rotor Shaft Loads
5260 Bending 0-180° Fwd sta 23.5 in.-1b oo0oo00O0 0 000 (o} 5 s
5262 Bending 0-180° Fwd sta 23.5 in.-1b o0 o 000 0 00
5268 Bending 0-180° Fwd sta 32.8 in.-1b
5270 Bending 0-180° Fwd sta 32.8 in.-l1lb 00000 X
5272 Bending 90-270° Fwd sta 32.8 in.-1b o] 000 (o] oo
5274 Bending 90-270° Fwd sta 32.8 in.-1b
5251 Bending 0-180° Aft sta 23.1 in.-1b
5253 Bending 0-180° Aft sta 23.1 in,-1lb 00O (o] o o000 0 o0
5259 Bending 0-180° Aft sta 37.0 in.-lb 0@
5261 Bending 0-180° Aft sta 37.0 in.-1lb 00O 5§80 S 58S
Rotor Shaft Torque
5501 Torque 45-135° Fwd sta 22.4 in.-1b
5504 Torque 0-90° Fwd sta 22.4 in.-1b 00000 O 000 (¢} (V]
5506 Torque 45-135° Fwd sta 22.4 in.-1b 00O0O0CO O 000 [o] oo
5510 Torque 45-135° Fwd sta 23.5 in.-l1lb o000OO0 © 000 (o] 00
5501 Torque 45-135° Aft sta 64.3 in.-l1b 00000 4] € I3 W (o] 00
5505 Torque 0-90° Aft sta 66.0 in.-lb 000XO0 O 000 [o] o0
5509 Torque 0-90° Aft sta 66.0 in.-l1lb 00000 O oo0o o oo
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TABLE II <« Continued

Flight
Code ) & e
No. Parameter Location Unitfcin @ m@ v o R dN m 00 Wk 0 00
EANN NN MEMMT MO MEEMOMM MmO
UMmm om0 a0 mmm o m
Additional Parameters
1746 Vert Accel Anti-Ice Valve No. | engine q XX X O 00
1766 vert Accel Difsr Inbd 100° No. 1 engine g oo o O oo
Clockwise
7347 Drag Link Temp No. 1 engine fwd end °c 0o o© 00
2118 DCP Speed Trim Actr Forward closet, lower in. 0o
Position controls
6130 Low-Sensitivity Altitude, Pitot-static system ft 0
ship

NOTES: 1. Blank space - Data intentionally not recorded
2. 0 - Operational parameter
3. @ - Parameter operational but data questionable
due to calibration error, sensitivity, or
voltage drift
4., B - Parameter operational on preflight calibration
but data trace went to band edge intermittently
or completely during flight
- Reverse polarity
- Parameter operational on preflight calibration
but data trace had light to moderate spiking
(not to band edge) during flight; spiking
affected analog to digital data recovery
7. X - Parameter operational on preflight calibration
but failed during precflight or flight or channel
was turned off due to operational difficulty
8. - Altitude sensitivity restricted on tape from
-1,458 feet to +9,565 fert for full bandwidth
based on standard day

o
[ -]

All data parameters were monitored before each flight, and
their electrical signals were adjusted to a standard base line
of zero or other predetermined constant. Because of static
preloads on certain dynamic components, the rotor blades were
positioned at the same azimuth for each preflight calibration.

Preflight requirements were:

e Lag damper blocks installed so that the rotor blades were
maintained in full-lead position throughout the calibration

sequence

e Forward yellow (instrumented) blade pitch arm 90 degrees to
the fuselage centerline on the right side

10



FLIGHT ENVELOPE AND LIMITATIONS

The gross-weight/center-of-gravity envelope for the CH-47C
helicopter is shown in Figure 2. The estimated flight enve-
lopes for 33,000-, 40,000-, and 46,000-pound gross weights are
shown in Figures 4, 5, and 6 respectively.

Level-flight speeds were to be terminated in tlight when load
levels on any telemetry parameter reached 150 percent of en-
durance limit values; maneuvers were to be terminated when
these load levels reached 200 percent of endurance limit
values. The aircraft fuselage g-limit airspeed of 201 knots
EAS was to be observed. All maneuvers were limited to 1l.5qg.

The maximum rotor speed was restricted to 247 rpm (power on or
power off) due to the heavier weight of the advanced-geometry
blade versus the standard metal blade. The test program was
to be conducted using the CH-47C programmed cyclic trim on the
forward and aft rotor heads.

Transmission and engine limitations were as follows:

Transmission Torque (1300 ft-1lb = 100%)

Dual Engine - Continuous 1235 ft-1b/eng
Transient (10 sec) 1300 ft-1b/eng

Single Engine - Continuous 1300 £t-1b
Transient (10 sec) 1950 ft-1b

Engine Rating, T55-L-11A

NRP - Continuous 3000 hp (1040 ft-1b
at 235 rpm)
MRP - 30 Min 3400 hp (1180 ft-1lb
at 235 rpm)
Max - 10 Min 3750 hp (1300 ft-1b
at 235 rpm)

MECHANICAL INSTABILITY TESTS

Qualitative mechanical instability tests were performed in the
testing described in Table I at 35,000 pounds gross weight,
235 rotor rpm, and at 44,000 pounds gross weight, 235 rotor
rpm.

At each gross weight and associated rotor speed setting, test-
ing consisted of a hover in ground effect and hover-to-landing
tests encompassing touchdown collective positions of 1 degree
to 5 degrees in l-degree increments, with the landing gear
swivels both locked and unlocked. At each gross weight, rpm,
and touchdown collective pitch setting, the pilot excited the
aircraft with lateral stick and directional pedal motion at a
medium and a fast frequency, wita a minimum of 25 percent of

1'|



control travel and 5 cycles of input. All tests were performed
with SAS off.

A qualitative evaluation of the stability characteristics of
the helicopter was performed by the test pilot. Stability
assessments were made at each test point according to the

standard pilot numerical rating of aircraft response shown
below:

1. Unable to induce oscillation
2. Oscillation damps rapidly

3. Oscillation damps slowly

4. Neutral oscillétion

5. Oscillation slowly divergent

6. Oscillation rapidly divergent

At no time at either weight was the pilot's assessment greater
than 2.

GROUND RUNS AND BLADE TRACKING

The helicopter was positioned on the ramp away from other air-
craft and buildings. With fire equipment, telemetry equipment,
and photographers standing by, the auxiliary power unit was
started and blocks were removed. The engines were then started
and aircraft characteristics were noted at the GROUND IDLE
condition. The engine speeds were slowly advanced to FLY and
again the aircraft characteristics were noted. The pilot then
shut down the engines and restarted them, going from GROUND
IDLE to FLY in a normal-to-fast rate.

During these ground runs, a track was performed which showed the
aft boron blades to be in track. Several pitch link adjust-
ments were required to bring the forward fiberglass blades into

proper track.

At no time during the initial run were any aircraft handling
problems encountered.

Table III gives the results of all tracking and adjustments
made to the boron blades. No details are provided for the
forward blades since they are not the subject of this test

program.

All tracking was conducted with the Strobex tracking system,
with the equipment tracking the blade at the 10 o'clock

12
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position. The 12 o'clock reference point would be the blade
tip located at the forward centerline of the aircraft.

The following blade color code has been used in presenting the
blade tracking results and the corresponding pitch link adjust-
ments:

e Y, yellow

® G, green

® R, red

All out-of-track conditions are relative to the red blade.
After the initial tracking results shown in Table III, the

boron blade maintained a consistent track throughout the test
program.
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ANALYSIS OF FLIGHT TEST DATA

ROTOR MOMENT STALL CHARACTERISTICS

This section presents studies of the flight loads of the CH-47C
helicopter equipped with boron advanced-geometry rotor blades.
The boron blades have the same aerodynamic shape as the fiber-
glass advanced-geometry blades reported in Reference 5. The
primary purpose of this study is to ¢stablish the boron rotor
blade moment stall characteristics, with emphasis on comparison
of the pitch 1link loads and waveforms with those of the CH-47C
equipped with metal-spar blades and with fiberglass/epoxy
advanced-geometry blades.

The following information is given in this section:

1. Definition of moment stall for the boron advanced-
geometry rotor blade

2., Illustration of pitch link load growth rate in stall

3. Display of flights of the boron blade encountering
moment stall

4. Effects of rpm on moment stall

5. Effect of altitude on moment stall, including growth
rate with altitude

6. Comparison of pitch link loads and waveforms for the
three different blades under similar flight conditions
and at equivalent Cp/o

7. Comparison of flight test pitch link load data on
basis of a flutter parameter

8. Blade structural properties and damping

Definition of Moment Stall

As stated in Reference 5, moment stall recognizes the increase
in blade alternating pitching moments resulting from stall oc-
curring along portions of the blade span. The blade pitching
moments are reflected in the pitch link loads; examination of
the pitch link load waveforms is necessary to define the in-
ception and development of moment stall on the boron advanced-
geometry blade.

The definition of moment stall inception for the boron blade
is the same as that defined for the fiberglass blade; namely,
that inception occurs at the point at which the first full
cycle of moment stall is discernible. This is indicated by

16



the second compression spike (nose-down pitching moment) in
the pitch link load waveform. The second compression spike by
definition must also occur in at least 50 percent of the level-
flight cycles to be called moment stall., Figures 7B and 7C
display examples of this definition in the fiberglass and
boron blades, respectively., CH-47C metal blade waveforms are
shown in Figure 7A, where inception is defined as that point
where the peak-to-peak loading occurring during the moment
stall cycle equals the peak-to-peak loading of the basic pitch
link waveform and occurs in at least 50 percent of the level-
flight cycles analyzed.

Load Growth Rate

In Figure 174 of Reference 5, it was noted that the fiberglass

blade pitch link load growth rate followed a V? trend in stall,
while the CH-47C metal blade growth rate was much more abrupt.

The boron blade pitch link load trends also follow essentially

a V2 trend after stall, very similar to that of the fiberglass

blade. Figures 8 and 9 illustrate this comparison.

It should be noted that the boron blade load trend for com-
parison is at a 51,200-pound gross weight and 2,200-foot
density altitude, rather than the approximately 46,000-pound
gross weight and 6,000-foot altitude for the fiberglass and
metal blades. The flight at 51,200 pounds was used for com-
parison because the boron blade was stalled continuously at
46,000 pounds and 6,000 feet.

There is no explanation at present for the differences in load
growth rates between the metal blade and the composite blades.
Considerations such as structural damping differences, thin
tips versus thick tips, and pitch axis location have been re-
lated to load growth rates. There is a limited amount of
stall data available on the BO-105 rotor that displays load
growth rates significantly higher than V?. Inasmuch as the
BO-105 blade is a composite (fiberglass) blade and has a 25-
percent pitch axis, one might conclude that the low load growth
rates on the advanced-geometry blades are due to the thin tip
construction. Although there is some wind tunnel model data
available for the comparison of thin tips and the 23010 air-
foil, unfortunately it is beyond the scope of this program to
pursue the problem in depth.

Summary of Flight Conditions Analyzed

Table I of this report summarizes the flight conditions
tested during the boron blade program. Table IV identifies
those flight conditions in which evidence of moment stall was
encountered. Figure 10 presents the same information on an

17
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FLIGHT 381, 44,700 LB CW, 6,350 FT DENSITY ALTITUDE, 245 RPM

COMPRESSION —eee—mey

. 4 é 44 Agf Run NUMBER

40 60 80
TRUE AIRSPEED - KN

4,000

3,000

O/ 'A%

(®

ALTERNATING PITCH LINK LOAD - LB

CH-47C METAL BLADES

FLIGHT 272, 46,000 LB Gw, 6,100 FT DENSITY ALTITUDE, 245 RPM

COMPRESSION ~———b

4,000

u z
5

¥ ®__(:}_- —.— -—{12 am:rzuuuazn

2,000 } o)

Lj

o a]
g © ¥ 1

1,000
&)7-——- -- 12)}— RUN NUMBER

G L.\'
&0 B0 100 120 L40 160

TRUE AIRSPEED - KN

FIBERGLASS ADVANCED-GEOMETRY BLADES

Figure 8. Pitch Link Load Growth With CH-47C Metal Blades and
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TABLE IV. SUMMARY OF LEVEL-FLIGHT RUNS HAVING MOMENT
STALL BASED ON WAVEFORM ANALYSIS
Density

CwW Altitude TAS Rotor

Flight Runs (1b) (ft) (kn) RPM
332 21 through 26 46,500 6,300 50-143 245
332 27 through 34 46,100 6,000 50-142 235
332 35 through 39 45,800 6,100 69~110 245
332 45 through 55 45,000 6,700 39-139 235
332 57 through 62 44,600 7,400 42-142 245
332 63 through 66 44,300 9,100 96-117 245
332 68 through 73 44,000 8,800 61-121 235
333 7 through 13 51,000 2,000 51-132 245
333 30 through 34 49,700 5,900 60-112 245
333 41 through 46 48,800 5,000 54-132 245
333 48 through 52 48,500 5,300 93-125 235
333 55 through 60 48,000 1,700 68-139 235
339 15 through 20 46,650 5,000 70-120 245
339 21 through 23 46,300 4,300 128-146 245
340 6 through 16 51,200 2,200 66-147 245
340 17 through 24 50,850 3,300 €9-135 245
340 48 through 53 41,150 11,200 88-136 245
340 56 through 64 40,800 7,300 70-144 245
340 65 through 70 40,500 6,400 88-140 235
340 73 through 79 40,200 5,200 87-147 235
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airspeed/altitude plot to obtain a better perspective of where
moment stall was encountered. A comparison to Figure 175 of
Reference 5 clearly displays the evidence of moment stall oc-
curring earlier on the boron advanced-geometry blade than on
the fiberglass advanced-geometry blade. For every combination
of gross weight, altitude, and rpm where comparative flight
conditions are available, the boron blade stalls earlier than
the fiberglass blade.

Effect of RPM on Moment Stall

The effect of rotor rpm is illustrated in Figure 11 and shows
the same trend as seen on the fiberglass advanced-geometry
blades and the CH-47C metal blades. As rpm increases, the
stall spike becomes progressively smaller until it disappears
altogether.

Effect of Altitude on Moment Stall

Figure 12 displays a comparison of the pitch link waveforms
for the fiberglass and boron advanced-geometry blades as a
function of altitude. The test data were obtained by stabi-
lizing the aircraft in a military power climb at 90 knots and
recording data at various altitudes. In order to more clearly
display the relative moment stall inception points, the alter-
nating pitch link loads were plotted versus density altitude
in Figure 13 and versus Cp/c in Figure 14. From these plots
it can be seen that stall inception occurs earlier on the boron
blade by 2,000 feet in altitude or by a Cp/c increment of
0.005. The test conditions were comparable for both blades
except for outside air temperatures and the difference in rate
of climb resulting from the temperature differential. These
differences were accounted for in the trim analysis used to
convert density altitude to Cp/o.

Pitch Link Load Comparison

Comparisons have been made for similar flight conditions

(equal thrust) and equivalent Cp/¢ (equal unit blade loading).
The comparison of pitch link load waveforms is shown in Figures
15 and 16 respectively for the CH-47C metal and the fiber-
glass and boron advanced-geometry blades. The waveforms for
the boron blade are similar in character and magnitude to those
of the fiberglass blade except that moment stall occurs earlier
with the boron blade (in the cases compared, stall is contin-
uous on the boron blade). Figures 17 through 21 compare
alternating aft pitch link loads for similar flight conditions
for each of the three blades over a gross weight range from
33,000 to 50,000 pounds. The unstalled pitch link loads for
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the boron blade are almost identical in magnitude to those of
the fiberglass blade as evidenced by Figures 17, 18, and

20. The only conflict with these conclusions occurs at the
50,000-pound-gross-weight test conditicn (Figure 21). The
boron blade loads are consistently higher than the glass blade
loads even in the un«<talled regions of flight. However, as
discussed earlier, the boron blade stalls earlier than the
fiberglass blade; and as one would expect, the stalled loads
are higher than the comparable glass blade loads.

A comparison of the boron blade pitch link loads on an equiv-
alent Cr/o basis, as shown in Figure 22, was necessarily

made at the same blade loadings used for the fiberglass blade
as shown in Figure 184 of Reference 5. The boron blade, how-
ever, is stalled continuously at those conditions, thus
accounting for the higher loads. A nondimensional comparison
of pitch link loads serves to confirm only that pitch link
load coefficients are substantially higher in stall than for
unstalled conditions (see Figure 23). Pages 188 through 192
of Reference 5 present the equations used to nondimensionalize
pitch link loads.

Comparison Based on Moment Stall Parameters

A comparison of the boron advanced-geometry blade with the
fiberglass and metal blades by using the nondimensional moment
stall inception parameter described on page 195 of Reference 5
shows that stall inception occurs earlier on the boron blade.
Figure 24 shows approximately 1 degree lower angle-of-attack
capability with the boron blade., It is interesting to note
that flexible blade theory predicts that the boron blade
operates in forward flight at tip angles of attack on the
order of 1/2 degree higher than the fiberglass blade (Figure
25). The moment stall parameter curve, however, was devel-
oped using rigid-blade trim analyses to obtain 21,270 values
and does not account for live twist differences bétween blades.

Those symbols in Figure 24 with arrows pointing upward and
to the left indicate that stall occurred during the entire
flight at that altitude and gross weight. The data point
represents the lowest airspeed for which stall was recorded.

Summary of Pitch Link Waveforms

Appendix I contains a display of many of the pitch link
waveforms examined in the process of establishing waveform
characteristics and moment stall inception.
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Blade Structural Properties and Effect of Damping

Table V presents a summary of the natural frequencies and
critical aerodynamic damping ratios for the three rotor blades
under study for the flap, chord, and torsion modes. Table VI
summarizes the important design paramete<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>